Supporting Information

Acid-Catalyzed Cyclization of Vinylsilanes Bearing an Amino Group. Stereoselective Synthesis of Pyrrolidines.

Katsukiyo Miura, Takeshi Hondo, Takahiro Nakagawa, Tatsuyuki Takahashi, and Akira Hosomi*

Department of Chemistry and Graduate School of Chemistry University of Tsukuba Tsukuba, Ibaraki 305-8571, Japan

> * For inquiries please address to Prof. Akira HOSOMI phone: +81-298-53-4237 facsimile: +81-298-53-6503 e-mail: hosomi@staff.chem.tsukuba.ac.jp

General Method. Unless otherwise noted, all reactions and distillations of solvents and reagents were carried out under N₂. Solvents were dried by distillation from sodium metal/benzophenone ketyl (THF, Et₂O), CaCl₂-NaHCO₃ (CHCl₃), and CaH₂ (CH₂Cl₂). TiCl₄ was simply distilled and stored as a CHCl₃ solution (1.0 M). All other commercially obtained reagents were used as received. High performance liquid chromatography was carried out with Shimadzu LC-6A and LC-10A (Shimadzu Shim-pack CLC-SiL 0.15 m x 6.0 ϕ , rate of flow 1.0 mL/min) using hexane-ethyl acetate as an eluent. Bath temperature was employed as boiling point in distillation using Kugelrohr apparatus. ¹H NMR spectra at 270 MHz and ¹³C NMR spectra at 67.7 MHz were determined on a JEOL JNM-EX270 instrument with tetramethylsilane (¹H, δ 0.00 ppm) or chloroform (¹H, δ 7.26 ppm; ¹³C, δ 77.00 ppm) as an internal standard. Infrared spectra were measured with a Shimadzu IR-460 spectrophotometer. Mass spectra were measured (by EI method) on a Shimadzu QP5000 or a JEOL JMS-GCMATE (HRMS) instrument. Microanalyses were performed by the Analysis Center of University of Tsukuba.

Synthesis of Vinylsilane Bearing an Amino Group. Vinylsilanes 1, 4, and 7 were prepared from THP ethers of 4-pentyn-1-ols and 5-hexyn-1-ol as shown in Scheme 7. The procedures for the syntheses of 1d and 7a are described as representative examples.

Synthesis of 1d. BuLi (1.62 M in hexane, 136 mL, 220 mmol) was dropwise added to a solution of 1-(2-tetrahydropyranyloxy)-4-pentyne (33.9 g, 202 mmol) in THF (200 mL) at -78 °C over 20 min.

(a) BuLi, THF, then RMe₂SiCl, (b) DIBALH, Et₂O-hexane, (c) DMSO, (COCl)₂, Et₃N, (d) PhMgBr, Et₂O, (e) BnNH₂, MS4A, (f) LAH, Et₂O, *i*-Pr₂O (g) NH₂OH•HCl, Na₂CO₃, H₂O, (h) P-X, Et₃N, CH₂Cl₂; P-X: Ac₂O (**1b**), CF₃CO₂Et (**1c**), TsCl (**1d**, **1h**, and **4**), MsCl (**1e**), Tf₂O (**1f**), (Boc)₂O (**1g**), (i) DEAD, phthalimide, PPh₃, THF, (j) H₂NNH₂•H₂O, EtOH, (k) TsCl, Et₃N, CH₂Cl₂

After 30 min, benzylchlorodimethylsilane (40.7 g, 220 mmol) was dropwise added to the reaction mixture over 10 min. After being stirred for another 30 min at -78 °C and 2 h at rt, the resultant mixture was poured into water (100 mL). After removal of the organic layer, the aqueous layer was extracted with AcOEt (30 mL). The combined organic layer was washed with sat. NaCl aq. (100 mL), dried over Na₂SO₄, and evaporated. Distillation of the crude product gave 5-benzyldimethylsilyl-1-(2-tetrahydropyranyloxy)-4-pentyne (61.8 g, 195 mmol) in 97% yield.

To a solution of 5-benzyldimethylsilyl-1-(2-tetrahydropyranyloxy)-4-pentyne (15.9 g, 50.3 mmol) in Et₂O (100 mL) at 0 °C was dropwise added DIBALH (0.95 M in hexane, 79 mL, 75 mmol).¹ The mixture was gradually warmed to rt and stirred for 40 h. To the reaction mixture was carefully added 20% potassium sodium tartrate aq. (20 mL), then 2 M NaOH aq. (50 mL). The mixture was stirred for 30 min. After removal of the organic layer, the aqueous layer was extracted with Et₂O (50 mL). The combined organic layer was washed with sat. NaCl aq. (50 mL), dried over Na₂SO₄, and evaporated. Methanol (100 mL) and TsOH•H₂O (200 mg) was added to the residue. After being

stirred for 2 h at rt, the reaction mixture was treated with Et_3N (2 mL) and evaporated. The crude product was purified by silica-gel column chromatography eluting with hexane-AcOEt (5: 1) to give (*Z*)-5-benzyldimethylsilyl-4-penten-1-ol (7.67 g, 32.7 mmol) in 65% yield.

DMSO (3.40 mL, 48.0 mmol)-CH₂Cl₂ (10 mL) was added to a solution of $(COCl)_2$ (2.10 mL, 24.1 mmol) in CH₂Cl₂ (40 mL) over 5 min at -78 °C.² After 10 min, (*Z*)-5-benzyldimethylsilyl-4-penten-1-ol (4.69 g, 20.0 mmol)-CH₂Cl₂ (20 mL) was added to the mixture over 5 min. After 15 min, the reaction mixture was treated with Et₃N (14.0 mL, 100 mmol) for 10 min, warmed to rt, quenched with water (25 mL), and extracted with CH₂Cl₂ (2 x 30 mL). The extract was dried over Na₂SO₄ and evaporated. Purification of the crude product by silica-gel column chromatography (hexane-AcOEt, 7:1) gave (*Z*)-5-benzyldimethylsilyl-4-pentenal (4.28 g, 18.4 mmol) in 92% yield.

Under air, Na₂CO₃ aq. (489 mg in water (2.5 mL), 4.61 mmol) was dropwise added to a mixture of (*Z*)-5-benzyldimethylsilyl-4-pentenal (2.14 g, 9.20 mmol), NH₂OH•HCl (799 mg, 11.5 mmol), and water (2.5 mL) at rt.³ After being stirred for 1 h, the mixture was extracted with Et₂O (2 x 15 mL). The combined organic layer was washed with water (25 mL), dried over Na₂SO₄, and evaporated. Purification of the crude product by silica-gel column chromatography (hexane-AcOEt, 5:1) gave (4*Z*)-5-benzyldimethylsilyl-4-pentenal oxime (2.26 g, 9.13 mmol) in 99% yield.

A solution of (4*Z*)-5-benzyldimethylsilyl-4-pentenal oxime (2.26 g, 9.13 mmol) in Et₂O (25 mL)-*i*-Pr₂O (75 mL) was added to a suspension of LAH (1.14 g, 30.1 mmol) in Et₂O (15 mL)-*i*-Pr₂O (50 mL) at 0°C over 30 min.³ The mixture was warmed to 55 °C and stirred for 24 h. The resultant mixture was cooled to rt, treated with 20% potassium sodium tartrate aq. (10 mL), and acidified (pH < 2) with 1 M HCl aq. After removal of the aqueous layer, the organic layer was extracted with 1 M HCl aq. (50 mL). The combined aqueous layer was alkalized (pH > 12) with 2 M NaOH and extracted with Et₂O (2 x 30 mL). The extract was dried over Na₂SO₄ and evaporated. The crude product ((*Z*)-5-benzyldimethylsilyl-4-penten-1-amine, 1.80 g, 7.69 mmol, 84%) was almost pure and directly used for the following transformation.

TsCl (772 mg, 4.05 mmol) was added to a solution of (*Z*)-5-benzyldimethylsilyl-4-penten-1-amine (886 mg, 3.80 mmol) and Et₃N (1.1 mL, 7.9 mmol) in CH₂Cl₂ (7 mL) at 0°C. After 1 h, the mixture was poured into sat. NaHCO₃ aq. (25 mL). After removal of the organic layer, the aqueous layer was extracted with CH₂Cl₂ (15 mL). The combined organic layer was dried over Na₂SO₄ and evaporated. Purification of the crude product by silica-gel column chromatography (hexane-AcOEt, 5:1) gave *N*-((*Z*)-5-benzyldimethylsilyl-4-pentenyl)*p*-toluenesulfonamide (1d, 1.42 g, 3.66 mmol) in 96% yield. 1d: IR (neat) 3280, 2955, 1599, 1327, 1160, 832 cm⁻¹; ¹H NMR (CDCl₃) δ 0.07 (s, 6H), 1.45 (tt, *J* = 7.6, 7.3 Hz, 2H), 1.94 (td, *J* = 7.6, 7.3 Hz, 2H), 2.11 (s, 2H), 2.42 (s, 3H), 2.88 (td, *J* = 7.3, 5.9 Hz, 2H), 4.21 (t, *J* = 5.9 Hz, 1H), 5.46 (d, *J* = 14.2 Hz, 1H), 6.20 (dt, *J* = 14.2, 7.3 Hz, 1H), 6.96-7.08 (m, 3H), 7.15-7.22 (m, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 8.1 Hz, 2H); ¹³C NMR (CDCl₃) δ -1.80 (CH₃ x 2), 21.37 (CH₃), 26.47 (CH₂), 29.27 (CH₂), 30.50 (CH₂), 42.72 (CH₂), 123.85 (CH), 126.95 (CH x 2), 127.82 (CH), 127.98 (CH x 2), 128.07 (CH x 2), 129.56 (CH x 2), 136.77 (C), 139.82 (C), 143.18 (C), 148.21 (CH); MS *m/z* (rel intensity) 372 (M⁺ - CH₃, 0.7), 296 (100), 149 (30), 91 (92).

Synthesis of 7a. According to the above-mentioned procedure, (*Z*)-5-benzyldimethylsilyl-4pentenal was prepared from 1-(2-tetrahydropyranyloxy)-4-pentyne. A solution of the aldehyde (3.32 g, 14.3 mmol) in Et₂O (15 mL) was added to PhMgBr (1.13 M in Et₂O, 14.0 mL, 15.8 mmol) at 0 °C over 5 min. After 30 min, the reaction mixture was quenched with iced 1 M HCl aq. (50 mL). After removal of the organic layer, the aqueous layer was extracted with Et₂O (20 mL). The combined organic layer was washed with sat. NaHCO₃ aq. (50 mL), dried over Na₂SO₄, and evaporated. Purification of the crude product by silica-gel column chromatography (hexane-AcOEt, 7:1) gave (*Z*)-5-benzyldimethylsilyl-1-phenyl-4-penten-1-ol (4.21 g, 13.6 mmol) in 95% yield.

Diethyl azodicarboxylate (DEAD, 1.94 g, 11.1 mmol) was added to a mixture of (*Z*)-5-benzyldimethylsilyl-1-phenyl-4-penten-1-ol (3.13 g, 10.1 mmol), THF (20 mL), phthalimide (1.62 g, 11.0 mmol), and PPh₃ (2.89 g, 11.0 mmol) at rt over 40 min.⁴ After being stirred for 57 h, the reaction mixture was evaporated, rinsed with Et₂O-hexane (1:1, 20 mL), and filtered. After evaporation of the filtrate, the crude product was purified by silica-gel column chromatography (hexane-AcOEt, 5:1) to give N-((*Z*)-5-benzyldimethylsilyl-1-phenyl-4-pentenyl)phthalimide (2.59 g, 5.89 mmol) in 58% yield.

Under air, hydrazine monohydrate (326 mg, 6.51 mmol) was added to a solution of N-((Z)-5benzyldimethylsilyl-1-phenyl-4-pentenyl)phthalimide (2.59 g, 5.89 mmol) in EtOH (20 mL) at rt.⁴ After 12 h, the reaction mixture was diluted with 2 M NaOH aq. (50 mL) and evaporated for removal of EtOH. The concentrated aqueous mixture was extracted with Et₂O (2 x 20 mL). The extract was washed with 2 M NaOH aq. (50 mL), dried over Na₂SO₄, and evaporated. The crude product (1.23 g) was diluted with CH₂Cl₂ (15 mL) under N₂. Et₃N (1.15 mL, 8.25 mmol) and TsCl (834 mg, 4.37 mmol) was added to the solution at 0 °C. The mixture was warmed to rt, stirred for 24 h, and poured into sat. NaHCO₃ aq. (50 mL). After removal of the organic layer, the aqueous layer was extracted with CH₂Cl₂ (20 mL). The combined organic layer was dried over Na₂SO₄ and evaporated. Purification of the crude product by silica-gel column chromatography (hexane-AcOEt, 5:1) gave N-((Z)-5-benzyldimethylsilyl-1-phenyl-4-pentenyl)p-toluenesulfonamide (7a, 1.63 g, 3.52 mmol) in 60% yield. 7a: ¹H NMR (CDCl₃) δ-0.07 (s, 6H), 1.56-1.92 (m, 4H), 2.01 (s, 2H), 2.34 (s, 3H), 4.22 (dt, J = 7.4, 7.0 Hz, 1H), 4.97 (d, J = 7.4 Hz, 1H), 5.41 (d, J = 14.0 Hz, 1H), 6.19 (dt, J = 14.0, 6.9 Hz, 1H), 6.91-7.01 (m, 4H), 7.05-7.22 (m, 8H), 7.53 (d, J = 8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ -2.01 (CH₃), -1.97 (CH₃), 21.35 (CH₃), 26.45 (CH₂), 30.03 (CH₂), 37.32 (CH₂), 58.06 (CH), 123.88 (CH), 126.49 (CH x 2), 126.94 (CH x 2), 127.30 (CH), 127.89 (CH), 128.01 (CH x 2), 128.14 (CH x 2), 128.36 (CH x 2), 129.22 (CH x 2), 137.63 (C), 139.91 (C), 140.40 (C), 142.84 (C), 147.91 (CH); MS m/z (rel intensity) 372 (M⁺ - C₆H₅CH₂, 16), 228 (33), 149 (36), 91 (100). Anal. Calcd for C₂₇H₃₃NO₂SSi: C, 69.94; H, 7.17; N, 3.02. Found: C, 69.91; H, 7.34; N, 2.95.

(*Z*)-*N*-Benzyl-5-benzyldimethylsilyl-4-penten-1-amine (1a): ¹H NMR (CDCl₃) δ 0.09 (s, 6H), 1.32 (br s, 1H), 1.55 (tt, *J* = 7.6, 7.3 Hz, 2H), 2.08 (tdd, *J* = 7.6, 7.3, 1.3 Hz, 2H), 2.15 (s, 2H), 2.61 (t, *J* = 7.3 Hz, 2H), 3.78 (s, 2H), 5.46 (dt, *J* = 14.2, 1.3 Hz, 1H), 6.33 (dt, *J* = 14.2, 7.3 Hz, 1H), 6.99-7.08 (m, 3H), 7.16-7.34 (m, 7H); ¹³C NMR (CDCl₃) δ -1.63 (CH₃ x 2), 26.70 (CH₂), 30.03 (CH₂), 31.50

5/12

N-((*Z*)-5-Benzyldimethylsilyl-4-pentenyl)acetamide (1b): IR (neat) 3285, 2965, 1647, 1595, 1554, 1250, 831, 697 cm⁻¹; ¹H NMR (CDCl₃) δ 0.10 (s, 6H), 1.51 (tt, *J* = 7.6, 7.3 Hz, 2H), 1.95 (s, 3H), 2.01 (tdd, *J* = 7.6, 7.3, 1.3 Hz, 2H), 2.15 (s, 2H), 3.18 (td, *J* = 7.3, 5.9 Hz, 2H), 5.36 (br s, 1H), 5.49 (dt, *J* = 14.2, 1.3 Hz, 1H), 6.30 (dt, *J* = 14.2, 7.3 Hz, 1H), 6.99-7.10 (m, 3H), 7.17-7.26 (m, 2H); ¹³C NMR (CDCl₃) δ -1.67 (CH₃ x 2), 23.25 (CH₃), 26.63 (CH₂), 29.42 (CH₂), 30.93 (CH₂), 39.23 (CH₂), 123.95 (CH), 127.73 (CH), 128.09 (CH x 2), 128.19 (CH x 2), 139.98 (C), 148.75 (CH), 169.95 (C); MS *m/z* (rel intensity) 260 (M⁺ - CH₃, 1.8), 184 (100), 149 (4.5), 110 (31), 69 (70), 43 (73).

N-((*Z*)-5-Benzyldimethylsilyl-4-pentenyl)trifluoroacetamide (1c): bp 90 °C (bath temp., 0.09 Torr). IR (neat) 3305, 2960, 1698, 1559, 1206, 1180, 833, 698 cm⁻¹; ¹H NMR (CDCl₃) δ 0.11 (s, 6H), 1.56 (tt, *J* = 7.6, 6.9 Hz, 2H), 2.01 (tdd, *J* = 7.6, 7.3, 1.3 Hz, 2H), 2.15 (s, 2H), 3.28 (dt, *J* = 6.9, 6.6 Hz, 2H), 5.53 (dt, *J* = 14.2, 1.3 Hz, 1H), 6.20 (br s, 1H), 6.28 (dt, *J* = 14.2, 7.3 Hz, 1H), 6.99-7.10 (m, 3H), 7.17-7.24 (m, 2H); ¹³C NMR (CDCl₃) δ -1.67 (CH₃ x 2), 26.62 (CH₂), 28.68 (CH₂), 30.64 (CH₂), 36.59 (CH₂), 115.80 (C, q, *J*_{C-F} = 288.1 Hz), 124.01 (CH), 128.12 (CH x 2), 128.23 (CH x 2), 128.52 (CH), 139.89 (C), 147.91 (CH), 157.11 (C, q, *J*_{C-F} = 36.6 Hz); MS *m*/*z* (rel intensity) 314 (M⁺ - CH₃, 0.8), 238 (100), 188 (24), 91 (25), 77 (98), 69 (60). Anal. Calcd for C₁₆H₂₂F₃NOSi: C, 58.33; H, 6.73; N, 4.25. Found: C, 58.14; H, 6.82; N, 4.35.

N-((*Z*)-5-Benzyldimethylsilyl-4-pentenyl)methanesulfonamide (1e): IR (neat) 3285, 2960, 1601, 1322, 1152, 832 cm⁻¹; ¹H NMR (CDCl₃) δ 0.12 (s, 6H), 1.57 (tt, *J* = 7.6, 7.3 Hz, 2H), 2.03 (tdd, *J* = 7.6, 7.3, 1.3 Hz, 2H), 2.15 (s, 2H), 2.93 (s, 3H), 3.06 (td, *J* = 7.3, 6.9 Hz, 2H), 4.17 (br s, 1H), 5.52 (dt, *J* = 14.2, 1.3 Hz, 1H), 6.28 (dt, *J* = 14.2, 7.3 Hz, 1H), 6.99-7.10 (m, 3H), 7.18-7.26 (m, 2H); ¹³C NMR (CDCl₃) δ -1.63 (CH₃ x 2), 26.62 (CH₂), 29.99 (CH₂), 30.51 (CH₂), 40.27 (CH₃), 42.88 (CH₂), 124.01 (CH), 128.12 (CH x 2), 128.23 (CH x 2), 128.30 (CH), 139.93 (C), 148.07 (CH); MS *m/z* (rel intensity) 220 (M⁺ - C₆H₅CH₂, 100), 152 (16), 91 (13), 75 (27), 59 (30).

N-((*Z*)-5-Benzyldimethylsilyl-4-pentenyl)trifluoromethanesulfonamide (1f): bp 110 °C (bath temp., 0.07 Torr). IR (neat) 3305, 2955, 1601, 1375, 1194, 1147, 833 cm⁻¹; ¹H NMR (CDCl₃) δ 0.13 (s, 6H), 1.49-1.61 (m, 2H), 1.96 (dt, *J* = 7.3, 6.9 Hz, 2H), 2.15 (s, 2H), 3.20 (t, *J* = 6.6 Hz, 2H), 4.56 (br s, 1H), 5.54 (d, *J* = 14.2 Hz, 1H), 6.25 (dt, *J* = 14.2, 7.3 Hz, 1H), 7.00-7.08 (m, 3H), 7.19-7.28 (m, 2H); ¹³C NMR (CDCl₃) δ -1.69 (CH₃ x 2), 26.60 (CH₂), 29.89 (CH₂), 30.19 (CH₂), 44.06 (CH₂), 119.59 (C, q, *J*_{C-F} = 321.0 Hz), 123.99 (CH), 128.16 (CH x 2), 128.28 (CH x 2), 128.72 (CH), 139.98 (C), 147.51 (CH); MS *m*/*z* (rel intensity) 350 (M⁺ - CH₃, 0.2), 296 (0.6), 274 (85), 149 (7.8), 114 (25), 91 (12), 77 (100). Anal. Calcd for C₁₅H₂₂O₂NF₃SSi: C, 49.29; H, 6.07; N, 3.83. Found: C, 49.23; H, 6.09; N, 3.85.

t-Butoxy *N*-((*Z*)-5-Benzyldimethylsilyl-4-pentenyl)carbamate (1g): bp 120 °C (bath temp., 0.043 Torr). IR (neat) 3355, 2970, 1695, 1507, 1249, 1171, 832 cm⁻¹; ¹H NMR (CDCl₃) δ 0.10 (s, 6H), 1.44 (s, 9H), 1.43-1.55 (m, 2H), 2.02 (td, *J* = 7.6, 7.3 Hz, 2H), 2.15 (s, 2H), 3.06 (q, *J* = 6.6 Hz,

2H), 4.44 (br s, 1H), 5.47 (d, J = 14.2 Hz, 1H), 6.30 (dt, J = 14.2, 7.3 Hz, 1H), 6.99-7.09 (m, 3H), 7.17-7.23 (m, 2H); ¹³C NMR (CDCl₃) δ -1.67 (CH₃ x 2), 26.67 (CH₂), 28.39 (CH₃ x 3), 29.90 (CH₂), 30.84 (CH₂), 40.16 (CH₂), 79.01 (C), 123.95 (CH), 127.57 (CH), 128.07 (CH x 2), 128.19 (CH x 2), 140.00 (C), 148.91 (CH), 155.85 (C); MS *m*/*z* (rel intensity) 260 (M⁺ - OC₄H₉, 1.1), 186 (100), 168 (22), 142 (41). Anal. Calcd for C₁₉H₃₁NO₂Si: C, 68.42; H, 9.37; N, 4.20. Found: C, 68.52; H, 9.44; N, 4.21.

N-((*Z*)-5-Dimethylphenylsilyl-4-pentenyl)*p*-toluenesulfonamide (1h): bp 195 °C (bath temp., 0.45 Torr). IR (neat) 3280, 2955, 1602, 1426, 1327, 1160, 815, 732, 703 cm⁻¹; ¹H NMR (CDCl₃) δ 0.34 (s, 6H), 1.38 (tt, *J* = 7.6, 6.9 Hz, 2H), 1.96 (tdd, *J* = 7.6, 7.3, 1.0 Hz, 2H), 2.43 (s, 3H), 2.76 (td, *J* = 6.9, 6.6 Hz, 2H), 4.00 (br s, 1H), 5.67 (dd, *J* = 13.9, 1.0 Hz, 1H), 6.27 (dt, *J* = 13.9, 7.3 Hz, 1H), 7.23-7.35 (m, 5H), 7.46-7.53 (m, 2H) 7.70 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ -1.08 (CH₃ x 2), 21.48 (CH₃), 29.22 (CH₂), 30.57 (CH₂), 42.64 (CH₂), 127.03 (CH x 2), 127.84 (CH x 2), 128.28 (CH), 128.95 (CH), 129,61 (CH x 2), 133.66 (CH x 2), 136.96 (C), 139.46 (C), 143.27 (C), 148.77 (CH); MS *m*/*z* (rel intensity) 358 (M⁺ - CH₃, 26), 281 (12), 218 (73), 149 (36), 135 (91), 91 (100).

N-((*Z*)-6-Benzyldimethylsilyl-5-hexenyl)*p*-toluenesulfonamide (4a): IR (neat) 3280, 2955, 1600, 1328, 1160, 1095, 830 cm⁻¹; ¹H NMR (CDCl₃) δ 0.06 (s, 6H), 1.20-1.45 (m, 4H), 1.94 (q, *J* = 7.3 Hz, 2H), 2.12 (s, 2H), 2.42 (s, 3H), 2.90 (q, *J* = 6.6 Hz, 2H), 4.29 (br s, 1H), 5.43 (d, *J* = 14.2 Hz, 1H), 6.21 (dt, *J* = 14.2, 7.3 Hz, 1H), 6.97-7.08 (m, 3H), 7.15-7.22 (m, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (CDCl₃) δ -1.67 (CH₃ x 2), 21.46 (CH₃), 26.40 (CH₂), 26.63 (CH₂), 29.08 (CH₂), 32.89 (CH₂), 43.06 (CH₂), 123.94 (CH), 127.04 (CH x 2), 127.35 (CH), 128.05 (CH x 2), 128.16 (CH x 2), 129.65 (CH x 2), 136.93 (C), 139.96 (C), 143.29 (C), 149.16 (CH); MS *m/z* (rel intensity) 386 (M⁺ - CH₃, 1.4), 310 (100), 149 (31), 91 (89).

N-[(*Z*)-6-dimethyl(1-phenylethyl)silyl-5-hexenyl]*p*-toluenesulfonamide (4b): IR (neat) 3270, 1600, 1328, 1160 cm⁻¹; ¹H NMR (CDCl₃) δ 0.01 (s, 3H), 0.03 (s, 3H), 1.18-1.44 (m, 7H) including 1.35 (d, *J* = 7.7 Hz), 1.88 (tdd, *J* = 7.4, 7.4, 1.2 Hz, 2H), 2.21 (q, *J* = 7.7 Hz, 1H), 2.42 (s, 3H), 2.89 (td, *J* = 6.8, 6.5 Hz, 2H), 4.38 (br t, *J* = 6.5 Hz, 1H), 5.40 (dt, *J* = 14.0, 1.2 Hz, 1H), 6.22 (dt, *J* = 14.0, 7.4 Hz, 1H), 7.01-7.10 (m, 3H), 7.18-7.32 (m, 4H), 7.72-7.76 (m, 2H); ¹³C NMR (CDCl₃) δ -3.11 (CH₃), -2.86 (CH₃), 14.90 (CH₃), 21.44 (CH₃), 26.40 (CH₂), 29.06 (CH₂), 29.51 (CH), 32.81 (CH₂), 43.04 (CH₂), 124.24 (CH), 126.49 (CH), 127.03 (CH x 2), 127.12 (CH x 2), 127.85 (CH x 2), 129.63 (CH x 2), 136.93 (C), 143.25 (C), 145.46 (C), 149.38 (CH); MS *m/z* (rel intensity) 400 (M⁺ - CH₃, 7.9), 310 (73), 91 (100).

N-((*Z*)-5-Benzyldimethylsilyl-2-phenyl-4-pentenyl)*p*-toluenesulfonamide (7b): IR (neat) 3275, 1600, 1330, 1150 cm⁻¹; ¹H NMR (CDCl₃) δ 0.04 (s, 3H), 0.05 (s, 3H), 2.08 (s, 2H), 2.18-2.28 (m, 2H), 2.42 (s, 3H), 2.59-2.71 (m, 1H), 2.95 (ddd, J = 12.5, 9.5, 4.2 Hz, 1H), 3.27 (ddd, J = 12.5, 8.6, 5.3 Hz, 1H), 4.12 (br s, 1H), 5.47 (dd, J = 14.3, 1.2 Hz, 1H), 6.11 (ddd, J = 14.3, 7.4, 6.8 Hz, 1H), 6.88-7.08 (m, 6H), 7.14-7.31 (m, 6H), 7.64 (d, J = 8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ -1.76 (CH₃), -1.67 (CH₃), 21.49 (CH₃), 26.53 (CH₂), 37.56 (CH₂), 45.72 (CH), 47.73 (CH₂), 124.03 (CH), 127.04 (CH x 2), 127.26 (CH), 127.66 (CH x 2), 128.12 (CH x 2), 128.19 (CH x 2), 128.90 (CH x 2), 129.22

(CH), 129.67 (CH x 2), 136.82 (C), 139.84 (C), 140.72 (C), 143.38 (C), 146.18 (CH); MS *m*/*z* (rel intensity) 372 (M⁺ - C₆H₅CH₂, 16), 228 (23), 91 (100).

N-((*Z*)-5-Benzyldimethylsilyl-3-phenyl-4-pentenyl)*p*-toluenesulfonamide (7c): IR (neat) 3270, 1599, 1492, 1329, 1157 cm⁻¹; ¹H NMR (CDCl₃) δ 0.10 (s, 3H), 0.13 (s, 3H), 1.60-1.90 (m, 2H), 2.12 (s, 2H), 2.41 (s, 3H), 2.75-2.84 (m, 2H), 3.36 (dt, *J* = 10.4, 7.4 Hz, 1H), 4.17 (br s, 1H), 5.50 (d, *J* = 14.0 Hz, 1H), 6.39 (dd, *J* = 14.0, 10.4 Hz, 1H), 6.94-7.09 (m, 5H), 7.14-7.29 (m, 7H), 7.66 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ -1.51 (CH₃), -1.42 (CH₃), 21.44 (CH₃), 26.62 (CH₂), 36.50 (CH₂), 41.40 (CH₂), 46.60 (CH), 124.03 (CH), 126.47 (CH), 127.04 (CH x 4), 127.49 (CH), 128.14 (CH x 2), 128.23 (CH x 2), 128.70 (CH x 2), 129.63 (CH x 2), 136.77 (C), 139.75 (C), 143.02 (C), 143.31 (C), 151.28 (CH); MS *m/z* (rel intensity) 448 (M⁺ - CH₃, 4.3), 372 (17), 281 (5.0), 91 (100).

Acid-Catalyzed Cyclization of Vinylsilanes 1, 4, and 7 (Typical Procedure). To a solution of 1d (194 mg, 0.501 mmol) in CHCl₃ (2.5 mL) was added TiCl₄ (1.0 M solution in CHCl₃, 25 µL, 0.025 mmol) at rt under N₂. After being stirred for 3.3 h, the mixture was poured into sat. NaHCO₃ aq. (20 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The extract was dried over Na₂SO₄ and evaporated. Purification of the crude product by silica-gel column chromatography (hexane-AcOEt, 10:1) gave 2-(benzyldimethylsilyl)methyl-1-p-toluenesulfonylpyrrolidine (2d, 180 mg, 0.464 mmol) in 93% yield. When TsOH•H2O was used as a catalyst, it was charged into a reaction flask before introduction of N₂ gas, and a solution of 1d in CHCl₃ was added to the flask under N₂. 2d: IR (KBr) 2945, 1332, 1246, 1156 cm⁻¹; ¹H NMR (CDCl₃) δ 0.01 (s, 3H), 0.05 (s, 3H), 0.90 (dd, J = 14.5, 11.2Hz, 1H), 1.33-1.54 (m, 3H), 1.57-1.82 (m, 2H), 2.13 (s, 2H), 2.43 (s, 3H), 3.21 (ddd, J = 10.6, 6.6, 6.6 Hz, 1H), $3.37 \pmod{J} = 10.6, 6.6, 6.3 \text{ Hz}, 1\text{H}$, $3.66-3.77 \pmod{14}, 6.99-7.08 \binom{1}{3}, 7.10-7.25 \binom{1}{3}$ 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃) δ -2.95 (CH₃), -2.73 (CH₃), 21.40 (CH₃), 24.12 (CH₂), 24.42 (CH₂), 25.86 (CH₂), 33.62 (CH₂), 48.41 (CH₂), 58.19 (CH), 123.99 (CH), 127.31 (CH x 2), 128.09 (CH x 2), 128.12 (CH x 2), 129.51 (CH x 2), 135.06 (C), 139.66 (C), 143.04 (C); MS m/z (rel intensity) 372 (M+ - CH₃, 1.7), 296 (100), 280 (2.0), 225 (1.4), 149 (10), 91 (25). Anal. Calcd for C₂₁H₂₉NO₂SSi: C, 65.07; H, 7.54; N, 3.61. Found: C, 64.97; H, 7.54; N, 3.67.

2-(Benzyldimethylsilyl)methyl-1-trifluoroacetylpyrrolidine (2c): IR (neat) 2955, 1687, 1599, 1491, 1453, 1238, 1202, 1139 cm⁻¹; ¹H NMR (CDCl₃) δ 0.02 (s, 3H), 0.07 (s, 3H), 0.66 (dd, *J* = 14.2, 11.2 Hz, 1H), 1.46 (dd, *J* = 14.2, 3.0 Hz, 1H), 1.52-1.56 (m, 1H), 1.83-2.08 (m, 3H), 2.14 (s, 2H), 3.55-3.62 (m, 2H), 4.20-4.30 (m, 1H), 6.96-7.12 (m, 3H), 7.18-7.25 (m, 2H); ¹³C NMR (CDCl₃) δ -3.07 (CH₃), -2.93 (CH₃), 20.27 (CH₂), 24.42 (CH₂), 25.73 (CH₂), 31.39 (CH₂), 46.02 (CH₂), 56.80 (CH), 116.28 (C, q, *J*_{C-F} = 288.1 Hz), 124.03 (CH), 128.05 (CH x 2), 128.14 (CH x 2), 139.50 (C), 154.83 (C, q, *J*_{C-F} = 36.7 Hz); MS *m/z* (rel intensity) 314 (M⁺ - CH₃, 2.9), 260 (0.7), 238 (100), 149 (5.4), 91 (13), 77 (37), 69 (61). Anal. Calcd for C₁₆H₂₂F₃NOSi: C, 58.33; H, 6.73; N, 4.25. Found: C, 58.33; H, 6.81; N, 4.27.

2-(Benzyldimethylsilyl)methyl-1-methanesulfonylpyrrolidine (2e): IR (neat) 2955, 1599, 1492, 1332, 1249, 1206, 1150, 833 cm⁻¹; ¹H NMR (CDCl₃) δ 0.02 (s, 3H), 0.05 (s, 3H), 0.87 (dd, *J* = 14.5,

11.2 Hz, 1H), 1.40 (dd, J = 14.5, 3.3 Hz, 1H), 1.50-1.59 (m, 1H), 1.75-2.03 (m, 3H), 2.13 (s, 2H), 2.78 (s, 3H), 3.34 (t, J = 6.6 Hz, 2H), 3.82 (dddd, J = 11.2, 8.3, 5.0, 3.3 Hz, 1H), 6.99-7.10 (m, 3H), 7.17-7.25 (m, 2H); ¹³C NMR (CDCl₃) δ -2.84 (CH₃), -2.62 (CH₃), 24.15 (CH₂), 24.66 (CH₂), 25.90 (CH₂), 33.93 (CH₂), 35.98 (CH₃), 48.07 (CH₂), 58.26 (CH), 124.08 (CH), 128.12 (CH x 2), 128.18 (CH x 2), 139.64 (C); MS *m*/*z* (rel intensity) 296 (M⁺ - CH₃, 1.5), 220 (100), 149 (5.1), 91 (8.1), 75 (20). Anal. Calcd for C₁₅H₂₅NO₂SSi: C, 57.84; H, 8.09; N, 4.50. Found: C, 57.79; H, 8.11; N, 4.54.

2-(Benzyldimethylsilyl)methyl-1-(trifluoromethanesulfonyl)pyrrolidine (2f): IR (neat) 2955, 1600, 1492, 1387, 1225, 1184, 835, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 0.02 (s, 3H), 0.05 (s, 3H), 0.91 (dd, *J* = 14.2, 11.9 Hz, 1H), 1.41 (dd, *J* = 14.2, 3.3 Hz, 1H), 1.52-1.61 (m, 1H), 1.84-2.13 (m, 3H), 2.12 (s, 2H), 3.41-3.49 (m, 1H), 3.60 (ddd, *J* = 10.2, 6.6, 6.6 Hz, 1H), 4.07-4.18 (m, 1H), 6.98-7.11 (m, 3H), 7.19-7.26 (m, 2H); ¹³C NMR (CDCl₃) δ -3.02 (CH₃), -2.77 (CH₃), 23.81 (CH₂), 24.61 (CH₂), 25.74 (CH₂), 33.73 (CH₂), 48.62 (CH₂), 60.35 (CH), 120.32 (C, q, *J*_{C-F} = 324.7 Hz), 124.25 (CH), 128.08 (CH x 2), 128.28 (CH x 2), 139.22 (C); MS *m/z* (rel intensity) 350 (M⁺ - CH₃, 1.0), 296 (0.3), 274 (100), 232 (0.9), 149 (11), 91 (14), 77 (58). Anal. Calcd for C₁₅H₂₂O₂NF₃SSi: C, 49.29; H, 6.07; N, 3.83. Found: C, 49.45; H, 6.09; N, 3.92.

2-[(Benzyldimethylsilyl)methyl]pyrrolidine (**2g**'). The title compound was obtained by deprotection of **2g** with 3 M HCl-MeOH (rt, 7 h). **2g**': bp 90 °C (bath temp., 0.45 Torr). IR (neat) 3330, 2955, 1591, 1488, 1249, 836 cm⁻¹; ¹H NMR (CDCl₃) δ 0.007 (s, 3H), 0.011 (s, 3H), 0.71 (dd, *J* = 14.2, 8.9 Hz, 1H), 0.96 (dd, *J* = 14.2, 5.6 Hz, 1H), 1.04-1.19 (m, 1H), 1.61-1.93 (m, 4H), 2.10 (s, 2H), 2.74 (ddd, *J* = 10.7, 8.3, 7.1 Hz, 1H), 2.92-3.06 (m, 2H), 6.97-7.09 (m, 3H), 7.17-7.23 (m, 2H); ¹³C NMR (CDCl₃) δ -2.93 (CH₃), -2.80 (CH₃), 22.50 (CH₂), 25.77 (CH₂), 26.04 (CH₂), 34.59 (CH₂), 46.18 (CH₂), 56.43 (CH), 123.86 (CH), 128.05 (CH x 4), 139.98 (C); MS *m/z* (rel intensity) 233 (M⁺, 1.5), 218 (3.4), 142 (87), 121 (20), 91 (10), 86 (6.3), 70 (100). HRMS calcd for C₁₄H₂₃NSi: 233.1600, found 233.1596.

2-(Dimethylphenylsilyl)methyl-1*-p***-toluenesulfonylpyrrolidine** (**2h**): ¹H NMR (CDCl₃) δ 0.33 (s, 3H), 0.35 (s, 3H), 1.11 (dd, J = 14.5, 11.9 Hz, 1H), 1.27-1.39 (m, 2H), 1.50-1.60 (m, 1H), 1.64-1.81 (m, 2H), 2.40 (s, 3H), 3.14 (ddd, J = 10.6, 6.6, 6.3 Hz, 1H), 3.36 (ddd, J = 10.6, 6.3, 6.3 Hz, 1H), 3.50-3.61 (m, 1H), 7.20-7.29 (m, 2H), 7.34-7.40 (m, 3H), 7.52-7.57 (m, 4H); ¹³C NMR (CDCl₃) δ -2.36 (CH₃), -2.27 (CH₃), 21.46 (CH₃), 24.19 (CH₂), 25.31 (CH₂), 33.57 (CH₂), 48.74 (CH₂), 58.19 (CH), 127.43 (CH x 2), 127.86 (CH x 2), 129.03 (CH), 129.47 (CH x 2), 133.68 (CH x 2), 134.69 (C), 138.48 (C), 142.96 (C); MS *m/z* (rel intensity) 373 (M⁺, 0.3), 358 (27), 296 (14), 224 (41), 135 (64), 91 (100). Anal. Calcd for C₂₀H₂₇NO₂SSi: C, 64.30; H, 7.28; N, 3.75. Found: C, 64.68; H, 7.45; N, 3.65.

2-(Benzyldimethylsilyl)methyl-1-*p*-toluenesulfonylpiperidine (**5**a): IR (neat) 2950, 1594, 1491, 1337, 1251, 1154, 1091 cm⁻¹; ¹H NMR (CDCl₃) δ 0.006 (s, 3H), 0.008 (s, 3H), 0.72 (dd, *J* = 14.7, 5.4 Hz, 1H), 1.00 (dd, *J* = 14.7, 10.1 Hz, 1H), 1.21-1.59 (m, 6H), 2.09 (s, 2H), 2.42 (s, 3H), 2.99 (ddd, *J* = 13.7, 12.8, 2.7 Hz, 1H), 3.71 (dd, *J* = 13.7, 3.7 Hz, 1H), 4.28-4.34 (m, 1H), 6.95-7.10 (m, 3H), 7.17-7.29 (m, 4H), 7.69 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ -3.14 (CH₃), -3.00 (CH₃), 16.19 (CH₂), 17.88 (CH₂), 21.46 (CH₃), 24.67 (CH₂), 25.75 (CH₂), 30.00 (CH₂), 40.00 (CH₂), 50.37 (CH), 123.99

(CH), 127.03 (CH x 2), 128.09 (CH x 2), 128.16 (CH x 2), 129.54 (CH x 2), 138.71 (C), 139.75 (C), 142.73 (C); MS *m*/*z* (rel intensity) 401 (M⁺, 1.5), 386 (2.0), 310 (100), 281 (39), 207 (77), 91 (23).

2-[Dimethyl(1-phenylethyl)silyl]methyl-1*p***-toluenesulfonylpiperidine (5b, 1:1 diastereomeric mixture)**: IR (neat) 2945, 1337, 1152, 1451, 1251 cm⁻¹; ¹H NMR (CDCl₃) δ -0.07 (s, 1.5H), -0.04 (s, 1.5H), -0.02 (s, 1.5H), 0.003 (s, 1.5H), 0.63 (dd, *J* = 14.5, 5.1 Hz, 0.5H), 0.65 (dd, *J* = 14.5, 5.1 Hz, 0.5H), 0.94 (dd, *J* = 14.5, 10.4 Hz, 1H), 1.23-1.58 (m, 9H) including 1.30 (d, *J* = 7.7 Hz) and 1.31 (d, *J* = 7.4 Hz), 2.16 (q, *J* = 7.4 Hz, 0.5H), 2.19 (q, *J* = 7.7 Hz, 0.5H), 2.42 (s, 3H), 2.89-3.03 (m, 1H), 3.67-3.74 (m, 1H), 4.23-4.28 (m, 1H), 6.96-7.11 (m, 3H), 7.18-7.29 (m, 4H), 7.64-7.71 (m, 2H); ¹³C NMR (CDCl₃) δ -5.08 (CH₃ x 0.5), -4.53 (CH₃ x 0.5), -4.49 (CH₃ x 0.5), -4.44 (CH₃ x 0.5), 14.27 (CH₂ x 0.5), 14.54 (CH₂ x 0.5), 14.86 (CH₃), 17.74 (CH₂), 21.31 (CH₃), 24.58 (CH₂), 28.65 (CH), 29.78 (CH₂), 39.86 (CH₂), 50.30 (CH), 124.26 (CH), 126.86 (CH x 2), 126.92 (CH x 2), 127.89 (CH x 2), 129.43 (CH x 2), 138.62 (C), 142.61 (C), 145.19 (C x 0.5), 145.25 (C x 0.5); MS *m/z* (rel intensity) 400 (M⁺ - CH₃, 0.9), 310 (100), 228 (4.4), 91 (48).

2-(Benzyldimethylsilyl)methyl-5-phenyl-1*-p***-toluenesulfonylpyrrolidine** (**8a**, *cis:trans* = **62:38**): ¹H NMR (CDCl₃) δ 0.01 (s, 1.86H), 0.04 (s, 1.14H), 0.05 (s, 1.86H), 0.10 (s, 1.14H), 0.92 (dd, *J* = 14.5, 12.5 Hz, 0.38H), 1.05 (dd, *J* = 14.5, 11.6 Hz, 0.62H), 1.35-1.58 (m, 1H), 1.62-1.87 (m, 3.24H), 2.15 (s, 1.24H), 2.16 (s, 0.76H), 2.09-2.32 (m, 0.38H), 2.35 (s, 1.14H), 2.43 (s, 1.86H), 2.39-2.52 (m, 0.38H), 3.90 (dddd, *J* = 11.6, 6.5, 6.5, 3.3 Hz, 0.62H), 4.27-4.36 (m, 0.38H), 4.77 (dd, *J* = 6.5, 5.5 Hz, 0.62H), 4.93 (dd, *J* = 8.3, 0.9 Hz, 0.38H), 6.98-7.15 (m, 6H), 7.20-7.41 (m, 6.76H), 7.67 (d, *J* = 8.3 Hz, 1.24H); ¹³C NMR (CDCl₃) δ -3.00 (CH₃, major), -2.95 (CH₃, minor), -2.80 (CH₃, major), -2.66 (CH₃, minor), 21.30 (CH₃, minor), 21.42 (CH₃, major), 22.28 (CH₂, minor), 24.80 (CH₂, major), 25.77 (CH₂, major), 25.95 (CH₂, minor), 30.69 (CH₂, minor), 32.35 (CH₂, major), 33.37 (CH₂, minor), 124.06 (CH), 126.20 (CH), 126.52 (CH), 126.70 (CH), 126.81 (CH), 126.90 (CH), 127.46 (CH), 127.92 (CH), 128.09 (CH), 128.16 (CH), 128.82 (CH), 129.49 (CH), 135.26 (C), 138.94 (C), 139.55 (C), 142.17 (C), 142.39 (C), 142.75 (C), 143.18 (C); MS *m/z* (rel intensity) 448 (M⁺ - CH₃, 2.4), 372 (37), 228 (57), 149 (26), 91 (100).

2-(Benzyldimethylsilyl)methyl-4-phenyl-1*-p***-toluenesulfonylpyrrolidine** (**8b**, *cis:trans* = **98:2**): IR (neat) 1598, 1492, 1343, 1157 cm⁻¹; ¹H NMR (CDCl₃, only signals corresponding to the *cis* isomer are given) δ 0.02 (s, 3H), 0.06 (s, 3H), 1.04 (dd, *J* = 14.3, 11.6 Hz, 1H), 1.58 (ddd, *J* = 11.9, 11.9, 9.5 Hz, 1H), 1.77 (dd, *J* = 14.3, 3.0 Hz, 1H), 2.14 (s, 2H), 2.27 (ddd, *J* = 11.9, 6.5, 6.5 Hz, 1H), 2.46 (s, 3H), 2.50-2.64 (m, 1H), 3.31 (dd, *J* = 11.6, 11.3 Hz, 1H), 3.75-3.87 (m, 2H), 6.99-7.11 (m, 5H), 7.17-7.36 (m, 7H), 7.74 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃, only signals corresponding to the *cis* isomer are given) δ -2.78 (CH₃), -2.48 (CH₃), 21.49 (CH₃), 24.75 (CH₂), 25.99 (CH₂), 42.46 (CH₂), 43.29 (CH), 54.47 (CH₂), 59.35 (CH), 124.10 (CH), 126.88 (CH x 2), 126.99 (CH), 127.37 (CH x 2), 128.12 (CH x 2), 128.19 (CH x 2), 128.57 (CH x 2), 129.70 (CH x 2), 135.45 (C), 139.41 (C), 139.59 (C), 143.32 (C); MS *m*/*z* (rel intensity) 463 (M⁺, 7.2), 372 (46), 228 (24), 149 (30), 91 (100). *trans*-2-(Benzyldimethylsilyl)methyl-3-phenyl-1-*p*-toluenesulfonylpyrrolidine (8c): ¹H NMR (CDCl₃), -0.03 (s, 3H), -0.004 (s, 3H), 1.19 (dd, *J* = 14.8, 10.4 Hz, 1H), 1.43 (dd, *J* = 14.8, 2.7 Hz, 1H), 1.43-1.54 (m, 1H), 2.08 (s, 2H), 2.08-2.20 (m, 1H), 2.48 (s, 3H), 2.92 (ddd, *J* = 6.5, 6.5, 5.1 Hz, 1H), 3.39-3.56 (m, 2H), 3.88 (ddd, *J* = 10.4, 5.1, 2.7 Hz, 1H), 6.60-6.65 (m, 2H), 6.94-6.98 (m, 2H), 7.04-7.23 (m, 6H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ -2.39 (CH₃), -2.35 (CH₃), 21.55 (CH₃), 24.17 (CH₂), 26.24 (CH₂), 33.05 (CH₂), 47.89 (CH₂), 52.45 (CH), 64.51 (CH), 124.03 (CH), 126.61 (CH), 126.92 (CH x 2), 127.53 (CH x 2), 128.18 (CH x 4), 128.54 (CH x 2), 129.69 (CH x 2), 135.33 (C), 139.84 (C), 142.03 (C), 143.34 (C).

Oxidative Cleavage of C–Si bond (Typical Procedure).⁵ A mixture of **2d** (117 mg, 0.302 mmol), TBAF (1.0 M in THF, 1.10 mL, 1.10 mmol), methanol (1.0 mL), H₂O₂ (30% in water, 0.34 mL, 3.0 mmol), and KHCO₃ (62 mg, 0.62 mmol) was stirred at 40 °C for 6 h. The resultant mixture was poured into 10% Na₂S₂O₃ aq. (25 mL) and extracted with Et₂O (2 x 20 mL). The extract was washed with 10% Na₂S₂O₃ aq. (25 mL), dried over Na₂SO₄, and evaporated. Purification of the residual oil by silica-gel column chromatography (hexane-AcOEt, 1:1) gave 2-hydroxymethyl-1-*p*-toluenesulfonylpyrrolidine (**12a**, 75.3 mg, 0.295 mmol) in 98% yield. **12a**: IR (neat) 3505 (br), 1343, 1159 cm⁻¹; ¹H NMR (CDCl₃) δ 1.39-1.47 (m, 1H), 1.59-1.87 (m, 3H), 2.44 (s, 3H), 2.73-2.77 (m, 1H), 3.26 (ddd, *J* = 10.2, 6.9, 6.9 Hz, 1H), 3.45 (ddd, *J* = 10.2, 6.3, 5.9 Hz, 1H), 3.57-3.73 (m, 3H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.73 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ 21.37 (CH₃), 24.05 (CH₂), 28.61 (CH₂), 49.81 (CH₂), 61.60 (CH), 65.55 (CH₂), 127.44 (CH x 2), 129.67 (CH x 2), 133.69 (C), 143.67 (C); MS *m*/*z* (rel intensity) 237 (M⁺ - H₂O, 0.5), 224 (66), 155 (44), 91 (100). Anal. Calcd for C₁₂H₁₇NO₃S: C, 56.45; H, 6.71; N, 5.49. Found: C, 56.47; H, 6.86; N, 5.34.

2-Hydroxymethyl-5-phenyl-1*-p***-toluenesulfonylpyrrolidine** (**12b**, *cis:trans* = **86:14**): ¹H NMR (CDCl₃) δ 1.63-2.05 (m, 3.72H), 2.23-2.39 (m, 0.14H), 2.34 (s, 0.42H), 2.41-2.57 (m, 0.14H), 2.44 (s, 2.58H), 2.71 (t, *J* = 6.5 Hz, 0.14H), 3.00 (dd, *J* = 7.1, 3.7 Hz, 0.86H), 3.68-4.06 (m, 3H), 4.78 (dd, *J* = 6.8, 5.6 Hz, 0.86H), 5.10 (dd, *J* = 8.3, 1.5 Hz, 0.14H), 6.91-7.28 (m, 0.98H), 7.30-7.42 (m, 6.30H), 7.72-7.56 (m, 1.72H); ¹³C NMR (CDCl₃) δ 21.35 (CH₃), 21.49 (CH₃), 27.48 (CH₂), 28.50 (CH₂), 33.41 (CH₂), 33.71 (CH₂), 62.59 (CH), 63.49 (CH), 65.32 (CH), 65.54 (CH₂), 65.84 (CH₂), 126.11 (CH), 126.81 (CH), 126.95 (CH), 127.01 (CH), 127.17 (CH), 127.73 (CH), 128.05 (CH), 128.39 (CH), 129.00 (CH), 129.78 (CH), 134.09 (C), 137.41 (C), 141.69 (C), 142.08 (C), 142.73 (C), 143.90 (C).

2-Hydroxymethyl-4-phenyl-1-*p*-toluenesulfonylpyrrolidine (12c, *cis:trans* = 90:10): IR (neat) 3500 (br), 1594, 1494, 1340 cm⁻¹; ¹H NMR (CDCl₃) δ 1.70-1.81 (m, 0.10H), 1.89 (ddd, *J* = 12.2, 11.9, 9.2 Hz, 0.90H), 2.10-2.18 (m, 0.10H), 2.26 (ddd, *J* = 12.2, 6.9, 6.9 Hz, 0.90H), 2.45 (s, 0.30H), 2.47 (s, 2.70H), 2.50-2.71 (m, 1H) including 2.57 (dddd, *J* = 11.9, 11.6, 6.9, 6.9 Hz, 0.90H), 2.98-3.03 (m, 1H), 3.37 (dd, *J* = 11.6, 11.6 Hz, 0.90H), 3.48-3.57 (m, 0.10H), 3.69-3.95 (m, 4H), 6.99-7.10 (m, 2H), 7.17-7.40 (m, 5H), 7.72-7.82 (m, 2H); ¹³C NMR (CDCl₃) for the *cis*-isomer δ 21.51 (CH₃), 36.07 (CH₂), 42.66 (CH), 55.89 (CH₂), 62.70 (CH), 65.48 (CH₂), 126.86 (CH x 2), 127.08 (CH),

127.44 (CH x 2), 128.57 (CH x 2), 129.94 (CH x 2), 134.36 (C), 138.90 (C), 143.99 (C). Anal. Calcd for C₁₈H₂₁NO₃S: C, 65.23; H, 6.39; N, 4.23. Found: C, 65.07; H, 6.16; N, 4.27.

trans-2-Hydroxymethyl-3-phenyl-1-*p*-toluenesulfonylpyrrolidine (*trans*-12d): ¹H NMR (CDCl₃) δ 1.48 (dddd, J = 12.5, 10.4, 10.4, 7.7 Hz, 1H), 2.02 (dddd, J = 12.5, 6.2, 6.2, 3.0 Hz, 1H), 2.49 (s, 3H), 2.84 (dd, J = 7.1, 5.9 Hz, 1H), 3.18 (ddd, J = 10.4, 7.7, 6.2 Hz, 1H), 3.45-3.56 (m, 2H), 3.64 (ddd, J = 11.6, 5.9, 5.0 Hz, 1H), 3.74 (ddd, J = 11.6, 7.7, 3.0 Hz, 1H), 3.87 (ddd, J = 11.6, 7.1, 3.0 Hz, 1H), 6.74-6.81 (m, 2H), 7.11-7.20 (m, 3H), 7.38 (d, J = 7.7 Hz, 2H), 7.76-7.81 (m, 2H); ¹³C NMR (CDCl₃) δ 21.58 (CH₃), 32.83 (CH₂), 47.86 (CH), 50.00 (CH₂), 63.84 (CH₂), 69.08 (CH), 127.07 (CH), 127.29 (CH x 2), 127.65 (CH x 2), 128.69 (CH x 2), 129.93 (CH x 2), 134.36 (C), 140.32 (C), 144.06 (C).

2-Hydroxymethyl-1*-p***-toluenesulfonylpiperidine** (**12e**): ¹H NMR (CDCl₃) δ 1.16-1.61 (m, 6H), 2.01 (br s, 1H), 2.42 (s, 3H), 3.09 (ddd, *J* = 14.3, 12.2, 2.7 Hz, 1H), 3.55 (dd, *J* = 11.1, 5.5 Hz, 1H), 3.76-3.85 (m, 2H), 3.87-4.03 (m, 1H), 7.29 (d, *J* = 8.3 Hz, 2H), 7.74 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ 18.94 (CH₂), 21.37 (CH₃), 24.06 (CH₂), 24.57 (CH₂), 41.28 (CH₂), 54.49 (CH), 60.45 (CH₂), 126.86 (CH x 2), 129.63 (CH x 2), 138.04 (C), 143.11 (C).

Stereochemical Assignment. Alcohol **12b** derived from **8a** (dr = 86:14) was converted to 5methyl-2-phenyl-1-*p*-toluenesulfonylpyrrolidine by tosylation (TsCl, Et₃N, CH₂Cl₂, 96%) and reduction (LAH, *i*-Pr₂O, 86%). The major isomer of the dehydroxylated pyrrolidine was assigned to *cis*-isomer by comparison with both isomers of 5-methyl-2-phenyl-1-(*p*-nitrobenzenesulfonyl)pyrrolidine in ¹H NMR data.⁶ Thus, the major isomer of **8a** was determined to have *cis*configuration. 5-Methyl-2-phenyl-1-*p*-toluenesulfonylpyrrolidine (*cis:trans* = 85:15): ¹H NMR (CDCl₃) δ 1.38 (d, J = 6.2 Hz, 0.45H), 1.47 (d, J = 6.2 Hz, 2.55H), 1.43-1.77 (m, 2H), 1.83-1.94 (m, 1.70H), 2.19-2.34 (m, 0.15H), 2.34 (s, 0.45H), 2.41-2.54 (m, 0.15H), 2.42 (s, 2.55H), 3.92 (ddq, J =6.5, 6.5, 6.2 Hz, 0.85H), 4.29 (dq, J = 6.5, 6.2 Hz, 0.15H), 4.72 (dd, J = 6.8, 6.2 Hz, 0.85H), 4.98 (br d, J = 8.0 Hz, 0.15H), 7.00-7.41 (m, 7.30H), 7.69 (d, J = 8.3 Hz, 1.70H); ¹³C NMR (CDCl₃) for the *cis*-isomer δ 21.33 (CH₃), 22.59 (CH₃), 31.95 (CH₂), 34.22 (CH₂), 57.70 (CH), 64.78 (CH), 126.09 (CH x 2), 126.76 (CH), 127.42 (CH x 2), 128.10 (CH x 2), 129.43 (CH x 2), 134.97 (C), 142.77 (C), 143.16 (C), for the *trans*-isomer δ 21.22 (CH₃), 21.48 (CH₃), 31.20 (CH₂), 33.08 (CH₂), 57.09 (CH), 63.54 (CH), 126.34 (CH x 2), 126.63 (CH x 2), 127.87 (CH x 2), 128.21 (CH), 128.84 (CH x 2), 138.76 (C), 142.23 (C), 142.43 (C).

Alcohol **12c** derived from **8b** (dr = 89:11) was acetylated with Ac₂O and pyridine. The stereochemical assignment of **8b** was based on NOE experiments of the major isomer of the acetate. 2-Acetoxymethyl-4-phenyl-1-*p*-toluenesulfonylpyrrolidine (*cis:trans* = 89:11): ¹H NMR (CDCl₃) δ 1.73 (ddd, J = 12.3, 12.3, 8.9 Hz, 0.11H), 1.85 (ddd, J = 12.8, 11.8, 8.6 Hz, 0.89H), 2.05 (s, 2.67H), 2.09 (s, 0.33H), 2.29-2.41 (m, 1H) including 2.36 (dddd, J = 12.8, 7.1, 7.1, 1.2 Hz, 0.89H), 2.45 (s, 3H), 2.66 (dddd, J = 11.8, 11.3, 7.1, 7.1 Hz, 0.89H), 3.02 (dd, J = 10.7, 9.2 Hz, 0.11H), 3.31 (dd, J = 11.6, 11.3 Hz, 0.89H), 3.42-3.51 (m, 0.11H), 3.72-3.94 (m, 1H) including 3.90 (ddd, J = 11.6, 7.1, 1.2 Hz, 0.89H), 4.00-4.13 (m, 1H) including 4.05 (dddd, J = 8.6, 7.1, 6.2, 4.5 Hz, 0.89H), 4.20-4.33 (m,

1.11H) including 4.27 (dd, J = 11.0, 6.2 Hz, 0.89H), 4.38 (dd, J = 11.0, 4.5 Hz, 0.89H), 7.01-7.10 (m, 2H), 7.18-7.37 (m, 5H), 7.76-7.80 (m, 2H); ¹³C NMR (CDCl₃) for the *cis*-isomer δ 20.83 (CH₃), 21.55 (CH₃), 36.73 (CH₂), 43.04 (CH), 55.19 (CH₂), 58.46 (CH), 66.70 (CH₂), 126.92 (CH x 2), 127.15 (CH), 127.46 (CH x 2), 128.66 (CH x 2), 129.88 (CH x 2), 135.18 (C), 139.03 (C), 143.79 (C), 170.75 (C), distinguishable signals for the *trans*-isomer δ 20.90 (CH₃), 35.37 (CH₂), 41.75 (CH), 55.08 (CH₂), 57.92 (CH), 66.15 (CH), 127.69 (CH), 129.79 (CH).

Alcohol **12d** derived from **8c** (single isomer) was converted to 2-methyl-3-phenylpyrrolidine, a known compound,⁷ by tosylation (TsCl, Et₃N, CH₂Cl₂, 75%), reduction (LAH, *i*-Pr₂O, 96%), and deprotection (PhOH, HBr, H₂O, 29%). The ¹H NMR spectrum of the product was consistent with that of the *trans*-isomer. Therefore, the relative configuration of **8c** was proved to be *trans*. 2-Methyl-3-phenylpyrrolidine (*trans*-isomer): ¹H NMR (CDCl₃) δ 1.12 (d, *J* = 5.9 Hz, 3H), 1.43 (br s, 1H), 1.97 (dddd, *J* = 12.8, 9.2, 8.6, 6.8 Hz, 1H), 2.31 (dddd, *J* = 12.8, 8.6, 7.7, 5.6 Hz, 1H), 2.57 (ddd, *J* = 9.2, 9.2, 8.6 Hz, 1H), 3.04 (dq, *J* = 9.2, 5.9 Hz, 1H), 3.10-3.20 (m, 2H), 7.17-7.35 (m, 5H); ¹³C NMR (CDCl₃) δ 19.10 (CH₃), 35.65 (CH₂), 46.16 (CH₂), 54.25 (CH), 63.00 (CH), 126.29 (CH), 127.60 (CH x 2), 128.48 (CH x 2), 143.34 (C); MS *m*/*z* (rel intensity) 161 (M⁺, 4.1), 77 (57), 57 (100). HRMS calcd for C₁₁H₁₅N: 161.1206, found 161.1209.

References

(1) (a) Uchida, K.; Utimoto, K.; Nozaki, H. J. Org. Chem. 1976, 41, 2215. (b) Zweifel, G.; Lewis, W.

- J. Org. Chem. 1978, 43, 2739.
- (2) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
- (3) Burger, A.; Bennet, W. B. J. Am. Chem. Soc. 1950, 72, 5414.
- (4) Mitsunobu, O. Synthesis, 1981, 1.
- (5) (a) Tamao, K.; Ishida, N. J. Organomet. Chem. 1984, 269, C 37. (b) Murakami, M.; Suginome,
- M.; Fujimoto, K.; Nakamura, H.; Andersson, P. G.; Ito, Y. J. Am. Chem. Soc. 1993, 115, 6487.
- (6) Togo, H.; Hoshina, Y.; Muraki, T.; Nakayama, H.; Yokoyama, M. J. Org. Chem. 1998, 63, 5193.
- (7) Meyers, A. I.; Snyder, L. J. Org. Chem. 1992, 57, 3814.